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Abstract. We briefly present a rule-based framework, called EAGLE, that has
been shown to be capable of defining and implementing finite trace monitoring
-logics, including future and past time temporal logic, extended regular expres-
" sions, real-time logics, interval logics, forms of gquantified temporal logics, and
so on. In this paper we show how EAGLE can do linear temporal logic (LTL)
monitoring in an efficient way. We give an upper bound on the space and time

complexity of this monitoring,

1 Introduction

Runtime verification, or runtime monitoring, comprises having a software module, an
observer, momitor the execution of a program, and check its conformity with a require-
ment_specification, often written in a temporal logic or as a state machine. Runtime

verification can be applied to evaluate automatically test runs, either on-line or off-lize,
analyzing stored execution traces; or it can' be used on-line during operation, potentially
steering the application back to a safety region if a property is violated. It is highly scal-
able. Several runtime verification systems have been developed, of which some were
presented at three recent international workshops on runtime verification [1]. o
.- Linear temporal logic (LTL) [17] has been core to several of these attempts. The
_commercial tool Temporal Rover (TR) [5, 6] supports a fixed future and past time LTL,
with the possibility of specifying real-time and data constraints (time-series) as anno-
tations on the temporal operators. Its implementation is based on alternating automata.
Algorithms using alternating automata to monitor LTL properties are also proposed in
[8], and a specialized LTL collecting statistics along the execution trace is described
in [7]. The MAC logic [16] is a form of past-time LTL with operators inspired by in- .
terval logics and which models real-time via explicit clock variables. A logic based on
extended regular expressions [18] has also been proposed and is argued to be more suc-
cinct for certain properties. The logic described in [14] is a sophisticated interval logic,
argued to be more user-friendly than plain LTL. Our own previous work includes the de-
- velopment of several algorithms, such as generating dynamic programming algorithms
for past time logic [12], using a rewriting system for monitoring future-time logic [11],
or-generating Biichi automata inspired algorithms adapted to finite trace L.TL [10].
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This large variety of logics promp d s to search for a small and general framework
for defining monitoring logics, th(: would be powerful enough to capture essentially
all of the above described logics, hence supporting future and past time logics, interval
logics, extended regular expressions, state machires, real-time and data constraints, and
statistics. The framework should support the definition of new logics in an'easy manner
and should support the monitoring of programs with their complex program states. The
result of our search is the logic EAGLE which is described in details in [4]. In this paper
we briefly describe EAGLE and its expressivity and then focus mainly on the subset
LTL and analyze it complexity. The EAGLE logic and its implementation for run-time
monitoring has in particular been significantly influenced by earlier work of Barringer
et'al., see for example [3], on the executable temporal logic METATEM. A linear-time
temporal formula can be separated [9] into a boolean combination of puré past, present
and pure future time formulas - in particular, the combination can be written as a collec-
tion of “directly executable” global conditional rules of the form “if pure past-fime then
present-time and pure future-time”. The present-time, or state, formulas determine how
the state for the current moment in time is built and the pure future-time formulas yield
obligations that need to be fulfilled at some time later. The separation result, rules and
future obligations are central in our current work. However, the fundamental difference |
between METATEM and EAGLE is that the METATEM interpreter builds traces state by
state, whereas EAGLE is used for checking given finite traces: costly implementation
features, such as backtracking and loop-checking, are not required.

- We recently discovered parallel work [15] using recursive equations to implement
a real-time logic. However we had already developed the ideas further. We provide the
language of recursive equations to the user, we support a mixture of future time and
past time operators, we treat real-time as a special case of data values, and hence we
allow a very general logic for reasoning about data, including the possibility of relating
-data values across the execution trace, both forwards and backwards.
*, The paper is structured as follows. Section 2 introduces ourlogic framework, then
in section 3 we discuss the algorithm and calculus that underlies our implementation
for the special case of LTL, which is then briefly described along with complexity and

initial experimentation in section 4.

2 The Logic

In this section we briefly describe the temporél finite trace monitoring logic EAGLE[4].
The logic offers a succinct but powerful set of primitives, essentially supporting re-
cursive parameterized equations, with a minimal/maximal fix-point semantics together

with-three-temporal-operators-next{-time, previous-time,and-concatenation.- The-nexit-

time and previous-time operators can be used for defining future time respectively past
time temporal logics on top of EAGLE. The concatenation operator can be used to define
interval logics and an extended regular expression language. Rules are parameterized
to ‘allow for reéasoning abotit data values, includinig real tiff€. Atornic propositions are
boolean expressions over a program state, Java states in the current implementation.
The logic is first introduced informally through two examples whereafter its syntax and

semantics is given. Finally, its relationship to some other important logics is outlined.
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2.1- EAGLE by Example
Fundamental Concepts Assume we want to state a property about a program P, which

contains the declaration of two integer variables x and y. We want to state that whenever
x 1s positive then eventually y becomes positive. The property can be written as follows
in classical future time LTL: (l(x > 0 — ¢y > 0). The formulas OF (always F) and OF
(eventually F), for some property F, usually satisfy the following equivalences, where
the temporal operator (OF stands for next F (meaning ‘in next state F’):

OF =FAQ(@F) OF =FVQ(OF)

One can show that (JF is a solution to the recursive equation X = F A (OX; in fact
it'is the maximal solution. A fundamental idea in our logic is to support this kind of
recursive definition, and to enable users define their own temporal combinators using
equations similar to those above. In the current framework one can write the following
definitions for the two combinators Always and Eventually, and the formula to be

monitored (M;): '
max Always(Fom F) = F A Qalways(F)

min Eventually(Form F) = FV(OEventually(F)
mon M; = Always(x >0 — Eventually(y > 0))

- The Always operator is defined as a maximal fix-point operator; the Eventually oper-
ator is defined as a minimal fix-point operator. Maximal rules define safety properties
_(nothing bad ever happens), while minimal rules define liveness properties (something
good eventually happens). For us, the differencé only becomes important when eval-
uating formulas at the boundaries of a trace. To understand how this works it suffices
to say here that monitored rules evolve as new states are appearing. Assume that the
end of the trace has been reached (we are beyond the last state) and a monitored for-
mula F has evolved to F’. Then all applications in F’ of maximal fix-point rules will
evaluate to true, since they represent safety properties that apparently have been satis-
fied throughout the trace, while applications of minirnal fix-point rules will evaluate to
false, indicating that some event did not happen. Assume for example that we evaluate
the formula M in a state where x > 0 and y < 0, then as a liveness obligation for the

future we w1ll have the expression:
OEventually(y >0)AQOAlvays(x >0 — Eventually(y > O))

Assume that we at this point detect the end of the trace; that is: we are beyond the last
state. The outstanding liveness obligation Eventually(y > 0) has not yet been fulfilled,
which is an error. This is captured by the evaluation of the minimal fix-point combinator
Eventually to false at'this point. The remaining other obligation from the A-formula,
namely, Always(x > 0 — Eventually(y > 0)), is a safety property and evaluates to

true.” )
For completeness we provide remaining definitions of the future time LTL operators

2 (until) and W (unless) below. Note how #/ is defined in terms of other operators.
However, it could have been defined recursively.

min Until(Form F,Form ) = F V (F AQUnt11(F1, B))

max Unless(Form Fy,Form ) = Until(F, /) VAlways(F)




Data Parameters We have seen how rules can be parameterized with formulas. Let’s

complicate the example with data parameters. Suppose we want to state the property:
“Whenever at some point k = x > 0 for some k, then eventually y == k”. This can

be stated as follows in quantified LTL: O(x > 0 — 3k.(k =xA Qy = k)). We use pa-
rameterized rules to state this property, capturing the value of x when x > 0 as a rule
parareter.

min R(int k) = Eventually(s.y == k)  monM, =Always(s.x >0 R(s.x))

Rule R is parameterized with an integer &, and is instantiated in M> when x > 0, hence
capturing the value of x at that moment. Rule R replaces the existential quantifier. The
logic also provides a previous-time operator, which allows us to define past time op-
erators; the data parametrization works uniformly for rules over past as well as future,
which is non-trivial to achieve since the implementation does not store the trace, see
Section 4. Data parametrization is also used to elegantly model real-time logics.

2.2 Syntax and Semantics

Syntax A specification S consists of a declaration part D and an observer part 0. D
consists of zero or more rule definitions R, and O consists of zero or more monitor
definitions M, which specify what to be monitored. Rules and monitors are named (V).

*::=dec D obs O

n=R*

n= M

v= {max |min} N(T3 x1,...,Tnx;) = F

n=N=F

::== Form | java primitive type

u:= java expression | true | false [ ~F | A AR |V | L — B |
OF [OF | AR [N(#,....F)

A rule deﬁmtxon R is preceded by a keyword indicating whether the interpretation is
maximal or minimal (which we recall determines the value of a rule application at thie
boundaries of the trace). Parameters are typed, and can either be a formula of type Form,
or of a primitive Java type, such as int, long, float, etc.. The body of a rule/monitor is
a Formula of the syntactic category Form (with meta-variables F, etc.). The proposi-
tions of this logic are Java expressions over an observer state. These can be arbitrary
Java expressions using all of Java’s expresswn language constructs, recommended not
to have 0 side effects. Formulas are composed using standard propositional logic op-
erators together with a next-state operator (OF), a previous-state operator (O F), and a
concatenatzon operator (F; - F). Finally, rules ¢an be applied and their parameters must

be type correct; formula arguments can be any formula, with the exception that if an
argiiment is a java expression, it must be of boolean type.

[oN

TR ROY

Semantics The semantics of the logic is defined in terms of a satisfaction relation
k= C Trace x Form between execution traces and specifications. An execution trace ¢




is a finite sequence of program states ¢ = s153...S,, where || = n is the length of the
trace. The i’th state s; of a trace & is denoted by (). The term o/ denotes the sub-
trace of ¢ from position i to position j, both positions included. In the implementation a
state is a user defined Java object that is updated through a user provided update method
for each new event generated by the program. Given a trace ¢ and a specification dec D

obs O, satisfaction is defined as follows:

cldecDobsO if V(N=F)€eO.0,1=p F-

That is, a trace satisfies a specification if the trace, observed from position 1 (the first
state), satisfies each monitored formula. The definition of the satisfaction relation {=D
C (Trace xmat) x Form, for a set of rule definitions D, is presented below, where
0<i< n+1 for some trace G = 5152 ...5,. Note that the position of a trace can become
0 (before the first state) when going backwards, and can becomé n+ 1 (after the last
state) when going forwards, both cases causing rule applications to evaluate to either
true if maximal or false if minimal, without considering the body of the rules at that

point.
0,1 =p jexp iff 1<i< o] and evaluate(jexp)(c(i)) == true
: G)ZFD.@
o,ifp false
c,if=p ~F iff ojillp F
o,iEp AR iff o,ilEpF ando,if=p B
o,i=p VE iff o,il=pFR oro,iEpF
G,‘i,=DFl —F iff 6,7 =p F, implies O‘,i}=D F
c,iEp OF iff i<|ojando,i+1=pF
o,iEp OF iff 1<iando,i—1f=pF
cikpF-F iff 3j>ist o ikp R andoliol 1 =p B

if 1 <i< |o| then:
) . G,I'I=DF[X1I—>F1,...,X,,}——+F,,]
c,ifEp N(F,...,Fy,) iff where (N(T} x1,:..,T, %) =F) €D
- otherwise, if i = 0 or i = |o| -+ 1 then:
rule N is defined as max in D

A Java expression (a proposition) is evaluated in the current state in case the position i is
within the trace (1 < ¢ < n). In the boundary cases (i = 0 and i = n+- 1) Java expressions
evaluate to false. Propositional operators have their standard semantics in all positions.
A next-time formula OF evaluates to-true if the current position is not beyond the
last state and F holds in the next position. Dually for the previous-time formula. This

means that these formulas always evaluate to-false in the boundary positions (0 and

n4-1). The concatenation formula F; - %, is true if the trace o can be split into two sub-

traces G = GGz, such that Fj is true on Gj, observed from the current position 7, and .
F, is true on o (ignoring ©y; and thereby limiting the scope of past time operators).
Applying a rule within the trace (positions 1...7) consists of replacing the call with the
right-hand side of the definition, substituting arguments for formal parameters. At the
" boundaries (0 and 7+ 1) a rule application evaluates to true if and only if it-is maximal.
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In this section we define the different operators for LTL in the form of rules. For the
special case of EAGLE, one writes an LTL formula to be monitored using these opera-
tors only. We do not allow to define new operators in the form of rules, as our algorithm
is hardwired with these operators and we do not do any synthesis of monitor for this
special case, LTL. However, in genéral EAGLE, one can define new temporal operators

as rules and in that case we synthesize the monitors.

Future Time LTL We start with the standard future time linear temporal logic based
on the temporal modalities, () and 7 . We also define the other modalities, such as
O, ¢ and 7, directly as rules in EAGLE. Our embedding relies upon the fact that the
formula ¢ U \ corresponds to the minimal solution to the equation X =¥V § AOX.

max Always(Form F) = F AQAlways(F))

min Eventually(Form F) = F V(OEventually(F))

min Until(Form Fi,Fom F) = 2 V (Fi AQUntil(F, B))
max Unless(Fom Fi,Form F>) = F2 V (Fy AQUnless(F1, B))

Note that the unless modality is defined as maximal since we require that
Unless(Fy,F) evaluates to true on the empty sequence, unlike Unti1(Fj, F>) that must

evaluate to false on the empty sequence.

Past Time LTL: A past time linear temporal logic, i.e. one whose temporal modalities
only look to the past, could be defined in the mirror way to the future time logic by using
the built-in previous modality, ©, in place of the future next time modality, . We
define an explicit rule, Previous, for the () modality in Past Time LTL. This is done for
technical reason (becomes clear later) and we assume that in an LTL formula one uses
Previous instead of (. Note that the Zince rule defines the past-time correspondent
to the future timme unless, or weak until, modality, i.e. it is a weak version of Since.

min Previous(Form F) =QOF

max AlvaysInPast(Form F) = F A(DAlwaysInPast(F))

min EventuallyInPast(Form F) = F V(O EventuallyInPast(F))
min S'ince(m F,Fom B) =FBVEAQO Since(F, F))

max Zince(Fomm F1,Form Fy) = B V (Fy AOzince(F, B))

Combined Future and Past Time LTL: By combining the definitions for the future
and past time LTLs defined above, we obtain a temporal logic over the future, present
and past, in which one can freely intermix the future and past time modalities (to any

depth).

24 “";'Réiaii‘onship to Other Logics

Although in this paper we use EAGLE for LTL monitoring, in general EAGLE is expres-
sively rich; indeed, any linear-time temporal logic, whose temporal modalities can be




recursively defined over the next, past or concatenation modalities, can be embedded
within it. Furthermore, since in effect we have a limited form of quantification over
possibly infinite data sets, and concatenation, we are strictly more expressive than, say,
a linear temporal fixed point logic (over next and previous). A formal characterization
of the logic is beyond the scope of this paper, however to make the paper self-contained,
we demonstrate the logic’s utility and expressiveness through some examples. However,
if the readers interested on LTL monitoring can skip this subsection.

Combined Future and Past Time LTL with Data Values: We are thus able to express
constraints such as if ever the variable x exceeds 0, there was an earlier moment when
the variable y was 4 and then remains with that value until it gets increased sometime

" later, possibly after the moment when x exceeds 0.

mon M, = Always(x > 0 — EventuallyInPast(y ==4AUntil(y ==4,y > 4)))

Extended LTL and ¢TL: The ability to define temporal modalities recursively pro-
vides the ability to define Wolper’s ETL orthe semantically equivalent fixpoint temporal
calculus. Such expressiveness is required to capture regular properties such as temporal
formula F is required to be true on every even moment of time:

max Even(Form F) = F A O Even(F)

The uTL formulavx.p AQOx A wy.g AQOxV Oy, where p and g are atomic formulas,
would be denoted by the formula, X(), where rules X and ¥ are:

max X() =pAOOX(0AY() minY()=gAOx(VOY()

Extended Regular Expressions: The language of Extended Regular Expressions
(ERE) i.e. adding complementation to regular expressions, has been proposed as a
powerful formalism for run-time monitoring. ERE can straightforwardly be embedded
within our rule-based system. Given, E ::= 0|€|a|E - E|E + E|E NE|-E|E*, let Tr(E)
denote the ERE E’s cdrrespondmg EAGLE formula. For convenience, we define the
rule max Empty() = = true which is true only when evaluated on an empty (suffix)

sequence. Tr is mductlvely defined as follows.

Tr(0) = false (8) = Empty()
Tr(a) =aAQEmpty() Tr(Ei-E) =Tr(E1) Tr(Ez)
Tr(E; +E;) = ’I&-(El) Vv Tr(E,) Tr(E; ﬂEz) = Tl'(El) A TI‘(Ez)
TIr(-E)  =-Tr(E)
Tr(E*) = X() where max X() = Empty() | (Tr(E)-X())

Real Time as a Special Case of Data Binding: Metric temporal logics, in which
temporal modalities are parameterized by some underlying real-time clock(s), can be
straightforwardly embedded into our system through rule parameterization. For exam-
ple, consider the metric temporal modality, of12] in a system with just one global clock.




An absolute interpretation of A[‘h‘ﬂm has the formula true if and only if ¢ holds at some

time in the future when the real-time clock has value within the interval [¢1,1]. For our
context, we assume that the finite sequence of states being monitored contains a variable
clock giving the real-time vajue of the clock for the associated state. The rule

min EventAbs(Form F,long t;,long #2) =
clock <=1t A(F —tj <= clock) A (=F — QEventabs(F,t;,1,))

defines the operator of12] for absolute values of the clock. A relativized version of the
modality can then be defined as:

min EventRel(Form F,long #,long ;) = EventAbs(F, clock +11,clock + 1))

Counting and Statistical Calculations: In a monitoring context, one may Wlsh to
gather statistics on the truth of some property, for example whether a particular state
property ¢ holds with at least some probability p over a given sequence, i.e. it doesn’t
fail with probability greater than (1— p). Consider the operator [J,¢ defined by: -

o,i = Op¢iff 35 C {i..|o{} s.t. l IISI >PpAYJES. 0‘]}=¢

An encoding within our logic can then be given as:

min A(Form ¢, float p,int f,int7) =
(QEmpty()A((OA(1=L) >=p) V(=9 A (1~ L) >= p))) v
(~Empty() A (0 — OB, p, £, + D)A(=¢ — —~ OR0,p, f +1,+ )

min AtLeast (Form ¢, float p) = A(¢, 5,0, 1)

Towards Context Free: Above we showed that EAGLE could encode logics such as
ETL, which extend LTL with regular grammars (when restricted to finite traces), or
even extended regular expressions. In fact, we can go beyond regularity into the world
of context-free languages, necessary, for example, to express properties such ds every
login is matched by a logout and at no point arée there more logouts than logins. Indeed,
such a property can be expressed in several ways in EAGLE. Assume we are monitoring
a sequence of login and logout events. We can define a rule Match(Form Fi,Form F)

and monitor with Match(login, logout) where:
min Match(Form Fy,Form F») = F; -Match(Fy, F) - Fy -Match(Fi,F) V Empty()

Less elegantly, and which we leave a$ an exercise, one could use the rule parametriza-
tion mechanism to count the numbers of logins and logouts.

3 Algorithm

In this section, we now outline the computation mechanism used to determine whether a
given monitoring formula given in LTL holds for some given input sequence of events.




On the observer side a local state is maintained. The atomic propositions are specified
with respect to the variables in this local state. At every event the observer modifies
the local state of the observer based on that event and then evaluates the monitored
formulas on that state and generates a new set of monitored formulas. At the end of the
trace the value of the monitored formulas are determined. The evaluation of a formula
F on a state s = () in a trace o results in an another formula eval(F,s) with the
property that 6,i = F if and only if 0,i+ 1 }= eval(F, s). The definition of the operator
eval : Form x State — Form uses another auxiliary operator update : Form x State —
Form. The intuition behind using the operator update is to update a formula properly in
presence of previous operators. The value of a formula F at the end of a trace is given
by value(F). The operator value : Form — {true, false} returns true if the formula is
satisfied by an empty trace and returns false otherwise. Thus given a sequence of states
$152...8,, an LTL formula F written in EAGLE is said to be satisfied by the sequence
of states if and only if value(eval(... eval(eval(F,s,),s2)...s,)) is true. The definition
of the operators eval, update and value forms the calculus of the recursive rule-based

framework. We define this calculus next.

3.1 Calculus

The eval, update and value operators are defined a priori for all operators. Note that,
unlike in general EAGLE where new temporal operators in the form of rules can be
defined, in LTL the operators are fixed. So instead of giving a general algorithm to
synthesize the definitions of eval, update and value for the rules [4], we can synthesize
these definitions for the fixed operators of LTL before hand and make them part of our
‘calculus. We do not define the functions on the previous operator, since this operator is
eliminated in the the calculus that we present next. The definition of eval, upa’ate and

value on the different operators is given below.

eval(jexp,s) = value of jexpin s
eval(Fy op F,s) = eval(Fy,s) op eval(F>,s) where op € {A,V,—}
eval(—F,s) = —eval(F,s)
eval(OF,s) = update(F,s)

update(jexp,s) = jexp
update(Fy op F»,s) = update(F,s) op update(F>,s) where op € {A,V,—}
. update(—F,s) = ~update(F, s)
update(QF,s) = Qupdate(F,s)
value(jexp) = false
value(Fi op F») = value(F) op value(F,) where op € {A,V,—}
value(~F) = —value(F)
value(QOF) = false
Note that eval of a formula of the form (OF on a state s reduces to the update of F on
state s. This ensures that if F' contains any past time operators then update of F updates
them properly. Moreover, value((OF ) is false as the operator () is assumed to have
strong interpretation in the logic. The value of a max rule is true and that of a min rule
is false. ,
value(R(F1,...,F,;)) = true if R is max
value(R(F1,..., F,)) = false if R is min




Howevey, the definition of the eval and updare operatars for the rules are not generic for

all LTL operators. They are synthesized according to the definition of the rules in the
specification and made part of the calculus. Consider the Always operator.

max Always(Form F) = F AQAlways(F)

For this rule eval and update are defined as follows.

eval(Always(F),s) = eval(F A OAlways(F),s)
update(Always(F),s) = update(F A(OAlways(F),s)

However, the definition of update results in infinite recursion. To break the recursion we
note that the rule Always does not contain any previous operator, although the argument
F may contain some. So we simply propagate the update to the argument F. Thus the

new definition of update becomes:

update(Always(F),s) = Always(update(F,s))

eval(Eventually(F),s) = eval(F Vv OEventually(F) ,5)
update(Eventually(F),s) = Eventually(update(F,s))

eval(Until(F, F),s) = eval(F, V (F AQUat iR, F2)),s)
update(Until(F),s) = Until(update(Fy,s),update(F,s))

eval(Unless(F,F),s) = eval(F, V (F; AQUnless(F1, F)),s)
update(Unless(F),s) = Unless{update(Fy,s), update(F,,s))

However, the definitioris are different for past time LTL operators. These operators de-
fined in the form of rules contain previous operator. In general, if a rule contains a
formula F guarded by a previous operator on its right hand side then we evaluate F at
every event and use the result of this evaluation in the next state. Thus, the result of eval-
uating F is required to be stored in some temporary placeholder so that it can be used
in the next state. To allocate a placeholder, we introduce, for every formula guarded by
a previous operator, an argument in the rule and use these arguments in the definition
of eval and update for this rule. Let us illustrate this with the following example.

max AlwaysInPast(Form F) = F A()AlwaysInPast(F))

For this rule we introduce another auxiliary rule AlwaysInPast’ which contains an
extra argument corresponding to the formula Q) (AlwaysInPast(F)).

. AlwaysInPast(Form F) = AlwaysInPast’(F,true)
eval(AlwaysInPast’(F,past;),s) = eval(F Apast,,s)
update(AlwaysInPast/(F,past,),s) =

AlwaysInPast’(update(F,s),eval(AlwaysInPast’(F,past;),s))

10




Here, in eval, the subformula (O(AlwaysInPast(F)) guarded by the previous operator
is replaced by the argument past, that contains the evaluation of the subformula in the
previous state. In update we not only update the argument F but also evaluate the sub-
formula AlwaysInPast’(F,past;) and pass it as second argument of AlwaysInPast’.
Thus in the next state past; is bound to (D(AlwaysInPast’(F,past,)). Note that in the
definition of AlwaysInPast’ we pass true as the second argument. This is because,
AlwaysInPast being defined a maximal operator, its previous value at the beginning of
the trace is true.

In a similar way we can give the calculus for the other past time LTL operators as

follows:

Previous(Fom F) = Previous'(F, false)
eval(Previous'(F,past,),s) = eval(past, s)

update(Previous’(F,past,),s) = Previous’(update(F,s), eval(Previous’(F,past;),s)) |

EventuallyInPast(Form F) = EventuallyInPast’(F,false)
eval(EventuallyInPast’(F,past,),s) = eval(F V past;,s)

update(EventuallyInPast/(F,past,),s) =
EventuallyInPast’(update(F,s),eval(

EventuallyInPast/(F past;),s))
Since(Form Fi,Form F) = Since'(F, 2, false)
eval(Since'(Fi, By, pasty),s) = eval(F, V (Fy Apasty, s)

update(Since’(Fi, Fo,past;),s) = ,
Since’(update(Fy,s),update(Fy,s),eval(Since’(Fy, B, past,),s))

Zince(Form Fi,Form F) = Zince'(F, F, true)

eval(zince'(F, B, past,),s) = eval(Fy V (Fy Apast,,s)

update(Zince' (Fy, Fa,pasty),s) =
zince'(update(F,,s),update(F1,s),eval(2ince (Fy, Fa, past;),s))

For the sake of completeness of the calculus we éxplicitly define value'onbthe above

LTL operators as follows:

value(Always(F)) = true value(Eventually(F)) = false
value(Until(Fy,F>)) = false value(Unless(F,F,)) = true
value(AlwaysInPast(F)) =true value(EventuallyInPast(F)) = false
value(Since(F,F,)) = false value(zince(F1,F)) = true

- Note that in the above calculus we have got rid of the previous operator by introducing
* an auxiliary argument or placeholder for every formula guarded by (9 operator. Hence,
we cannot use the operator () while writing an LTL formula. Instead we use the rule
Previous as defined above. : -

" Thus, we translate the rules in the specification to a set of definition of eval and
update operators. Once we have this translation we can easily execute, or in other words,
evaluate all the monitors at each state in a trace of a running program.
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We have an implementation for the monitoring framework for EAGLE in Java. The
implemented system works in two phases. First, it compiles the specification file to
synthesize a set of Java classes; a class is generated for each rule. Second, the Java class
files are compiled into Java bytecode and then the monitoring engine dynamically loads
the Java classes for rules at monitoring time and monitors a trace.

However, for the purpose of LTL monitoring we do not have to synthesize the Java
classes as the set of rules are fixed. Rather, we hardwire the whole algorithm in the
implementation. - '

In order to make the implementation efficient we use the decision procedure of
Hsiang [13]. The procedure reduces a tautological formula to the constant true, a false
formula to the constant false, and all other formulas to canonical forms which are ex-
clusive disjunction (@) of conjunctions. The procedure is given below using equations
that are shown to be Church-Rosser and terminating modulo associativity and commu-

tativity.
false A = false

true AQ =9

OAND=¢ false @¢=¢

QDo = false ~¢ = true $¢

P1A (02 @03) = (01 A 92) ® (91 A 03) O1 Vo2 ={(01A92) DP1 D P2
b1 — O =true @1 B (91 AP2) 0 =0 =true®P; Db

In particular the equations 9 A9 = ¢ and ¢ B¢ = false ensures that, at the time of
monitoring, we do not expand the formula beyond bound. The bound is given by the

following theorem:

Theorem 1. The size of the formula at dny stage of monitoring is bounded by
0(5ize(¢).2‘lze(¢>), where  is the initial LTL formula for which we started monitoring.

Proof. The above equations, when regarded as simplification rules, keeps any LTL
formula in a canonical form, which is an exclusive disjunction of conjunctions,
where conjuncts have temporal operators at top. Moreover, after a series of ap-
plications of ‘eval on the states si,52,...,5,, the conjuncts in the normal form
eval(...eval(eval(9,s1),52)...,5,) are subterms of the initial formula ¢, each having a
temporal operator at its top. Since there are at most size(9) such subformulas, it follows -
that there are at most 252¢(%) possibilities to combine them in a conjunction. The space
requirement for each conjunct is size(¢). Therefore, one needs space O(size(0).257¢(9))

to store any exclusive disjunction of such conjunctions. O

The implementation contains a strategy for the application of these equations that en-
sures that the time complexity of each step in monitoring is O(size?(¢)- 22-5i2¢(9)), We
next describe the strategy briefly. Since, our LTL formulas are exclusive disjunction of
conjunctions we can treat them as a tree of depth two: the root node at depth O repre-
senting the @ operator, the children of the root at depth 1 representing the A operators,
and thé leaf nodes at depth 2 representing the temporal operators and the Java expres-
sions. For example, figure 1 shows the tree representation of the formula p — Qg Ur),

whose canonical form is true ® p@® (p A O(g U T)).

12




. Fig. 1. Tree representation of p — O(g U r)

When we apply eval on a formula and a state the eval function is applied in depth-
first fashion on this tree and we build up the resultant formula in a bottom-up fashion.
At the leaves the application of eval results either in the evaluation of a Java expression
or the evaluation of a rule. The evaluation of a Java expression returns either true or
false. We assurne that this evaluation takes unit time. On the other-hand, the evaluation
of a rule may result in an another formula in canonical form. The formula at any internal
node is then evaluated by taking the conjunction (or exclusive disjunction) of the for-
mulas of the children nodes as they get evaluated. The following gives the pseudocode

for the startegy:

Form eval(F,s)

begin

© Forn F';

' if F is conjunction of subformulas then
F' "= true; :
for each subformula Fsub of F do

F' = F' A eval(Fsub,s);
endfor .
else if F is exclusive disjunction of subformulas then

F' = false;

for each subformula Fsub of F do
F' = F' @ eval(Fsub;s);
. __”____endfor . . .. : R
‘else if F is a rule or expressiori' then

éndif |
. return F’; -
endsub
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Note that the applicaticn of on tw al
the application of the distributive equation ¢; A ($p2 @ ¢3) = (01 Ad2) D
possibly other equations.

At any stage of this algorithm there are three formulas that are active: the orig-
inal formula F on which eval is applied, the formula F”, and the result of the eval-
uation of the subformula Fsub. So, by theorem 1 we can say that the space com-
plexity of this algorithm is O(size($).252¢(%)). Moreover, the algorithm traverses the
formula once at each node it can possibly spend O(size(9).2°%¢(®)) time to do the
conjunction and exclusive disjunction. Hence the time complexity of the algorithm
is O(size(§).252¢(9)).0(size().2°%¢(9)) or O(size?().225%@®)). These two bounds ‘are
given as the following theorem.

Nate that tha annlication of caninnetion
WA/LL )ALV LI AL

" Theorem 2. At any stage of monitoring the space and time complexity of the eval-
uation of the monitored LTL formula on the current state is O(size(9).2-%9) and

O(size®(0).2%57¢(9)) respecrively.

EAGLE has been applied to test a planetary rover controller in a collaborative effort
with:other colleagues, see [2] for an earlier similar experiment using a simpler logic.
The rover controller, written in 35,000 lines of C++, executes action plans. The testing
environment, consists of a test-case generator, automatically generating input plans for
the controller. Additionally, for each input plan a set of temporal formulas is generated
that the plan execution should satisfy. The controller is executed on the generated plans
and the implementation of EAGLE is used to monitor that execution traces satisfy the
formulas. A previously unknown error was detected in the first run, demonstrating that
a certain task did not.recognize the too early termination of some other task.

5 Conclusion and F utureA Work

We have presented a representation of linear temporal logic with both past and future
temporal operators in EAGLE. We have shown how the generalized monitoring algo-
rithm for EAGLE becomes simple and elegant for this particular case. We have bounded
the space and time complexity of this specialized algorithm and thus showed that gen-
eral LTL monitoring is efficient if we use EAGLE framework. Initial experiments have
been successful. Future work includes: optimizing the current implementation; investi-
gating other efficient subsets of EAGLE and associating actions with formulas.
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